1 |
- |
Introduction, Errors in Numerical Operations |
- |
2 |
- |
Matrix, Solutions of Linear Equation Systems, Introduction |
- |
3 |
- |
Direct Methods I: LU, Separation Method, Dolittle Method, Crout Method |
- |
4 |
- |
Direct Methods II: Cholesky Method |
- |
5 |
- |
Indirect Methods: Jacobi Method, Gauss Seidel Method, Error Analysis in Linear Equation System Solutions |
- |
6 |
- |
Nonlinear Equations I: Finding the Root Interval, Bisection Method |
- |
7 |
- |
Nonlinear Equations II: Fixed point iteration method, Newton Raphson Method |
- |
8 |
- |
MID-TERM EXAM |
- |
9 |
- |
Approximation Method I: Interpolation, Interpolation Polynomials |
- |
10 |
- |
Approximation Method II: Lagrange Interpolation, Newton Interpolation, Divided Differences Interpolation |
- |
11 |
- |
Numerical Derivativaton I: Forward Difference - Backword Difference - Central Difference Methods |
- |
12 |
- |
Numerical Derivativaton II: First and second order derivatives |
- |
13 |
- |
Numerical Integration I: Pivot Point, Interpolation Line and Integration Formulas |
- |
14 |
- |
Numerical Integration II: Interpolation Parabola, Simpson's Method, Numerical Integral Error Analysis |
- |
15 |
- |
An overview |
- |
16 |
- |
FINAL EXAM |
- |
17 |
- |
FINAL EXAM |
- |