TR EN

MATHEMATICS II PROGRAMME COURSE DESCRIPTION

Code Name of the Course Unit Semester In-Class Hours (T+P) Credit ECTS Credit
MTH106 MATHEMATICS II 2 5 4 6

GENERAL INFORMATION

Language of Instruction : English
Level of the Course Unit : BACHELOR'S DEGREE, TYY: + 6.Level, EQF-LLL: 6.Level, QF-EHEA: First Cycle
Type of the Course : Compulsory
Mode of Delivery of the Course Unit -
Coordinator of the Course Unit Assist.Prof. SERKAN GÖNEN
Instructor(s) of the Course Unit
Course Prerequisite No

OBJECTIVES AND CONTENTS

Objectives of the Course Unit: To teach the students real functions, trigonometric and exponential functions, limit and derivative concepts and analysis, indefinite and definite integrals and solutions.
Contents of the Course Unit: Real Functions, Trigonometric and Exponential Functions, Limit and Derivative Concepts and Analysis, Indefinite and Definite Integrals and Solutions.

KEY LEARNING OUTCOMES OF THE COURSE UNIT (On successful completion of this course unit, students/learners will or will be able to)

The students who take the course will be able to; I. Know trigonometric, exponential and logarithmic functions. II. Know and develop limit and derivative concepts. III. Able to perform applications about limit and derivative. Can achieve solutions for indefinite and definite integrals.

WEEKLY COURSE CONTENTS AND STUDY MATERIALS FOR PRELIMINARY & FURTHER STUDY

Week Preparatory Topics(Subjects) Method
1 Literature Research Definition and Scope of Course Expression
2 Literature Research Real Numbers, Complex Numbers and Related Problem and Solutions Expression
3 Literature Research Identities, Algebraic Equations and Related Analyzes Expression
4 Literature Research Limit, Limit Rules, Calculation of Limit Values of a Function Expression
5 Literature Research Uncertain Cases at Limits, Applications of L'Hospital Rule. Expression
6 Literature Research Algebraic and Geometric Meanings of Derivative, Rules of Derivation, Expression
7 Literature Research Derivatives of Trigonometric Functions and Applications Expression
8 - MID-TERM EXAM -
9 Literature Research Derivatives of Trigonometric Functions and Applications Expression
10 Literature Research Derivatives of Transcendental Functions, Problem Solutions of These Subject Expression
11 Literature Research Definition of Integral, Formulas, Integration Methods Expression
12 Literature Research Integral Applications by Simple Fractions Method Expression
13 Literature Research Integral Applications by Change of Variables Method Expression
14 Literature Research Integral of Transcendental Functions and Related Analyzes Expression
15 Literature Research Definition of The Definite integral, Formulas and Methods Expression
16 - FINAL EXAM -
17 - FINAL EXAM -

SOURCE MATERIALS & RECOMMENDED READING

Temel ve Genel Matematik, H. Hilmi Hacısalihoğlu, Mustafa Balcı, Ankara, 1996.
Yüksek Matematik Problemleri, A. Karadeniz, Çağlayan Kitabevi, İstanbul, 2003.
Diferansiyel ve İntegral Hesap, W. A. Granville, P. F. Smith, W. R. Longley. Çeviren: Naci İskender, İstanbul, 1954.

ASSESSMENT

Assessment & Grading of In-Term Activities Number of Activities Degree of Contribution (%) Description
Level of Contribution
0 1 2 3 4 5

CONTRIBUTION OF THE COURSE UNIT TO THE PROGRAMME LEARNING OUTCOMES

KNOWLEDGE

Theoretical

Programme Learning Outcomes Level of Contribution
0 1 2 3 4 5
1
Ability to identify, analyze, design, model and solve complex engineering problems based on engineering, science and mathematics fundamentals

KNOWLEDGE

Factual

Programme Learning Outcomes Level of Contribution
0 1 2 3 4 5
1
Ability to apply engineering design to produce solutions that meet specific needs, taking into account global, cultural, social, environmental and economic factors as well as public health, safety and well-being

SKILLS

Cognitive

Programme Learning Outcomes Level of Contribution
0 1 2 3 4 5
1
Ability to communicate effectively with various stakeholders

SKILLS

Practical

Programme Learning Outcomes Level of Contribution
0 1 2 3 4 5
1
The ability to recognize ethical and professional responsibilities in engineering and make informed decisions considering the impact of engineering solutions in their global, economic, environmental and social contexts

OCCUPATIONAL

Autonomy & Responsibility

Programme Learning Outcomes Level of Contribution
0 1 2 3 4 5
1
The ability to recognize ethical and professional responsibilities in engineering and make informed decisions considering the impact of engineering solutions in their global, economic, environmental and social contexts

OCCUPATIONAL

Learning to Learn

Programme Learning Outcomes Level of Contribution
0 1 2 3 4 5
1
Ability to acquire new knowledge and find ways to apply it when necessary, using appropriate learning strategies

OCCUPATIONAL

Communication & Social

Programme Learning Outcomes Level of Contribution
0 1 2 3 4 5
1
Ability to work effectively in a team where its members lead together, create a collaborative and inclusive environment, set goals, plan tasks, and meet goals

OCCUPATIONAL

Occupational and/or Vocational

Programme Learning Outcomes Level of Contribution
0 1 2 3 4 5
1
Ability to design and conduct appropriate experiments, analyze and interpret data, and apply engineering principles to draw conclusions

WORKLOAD & ECTS CREDITS OF THE COURSE UNIT

Workload for Learning & Teaching Activities

Type of the Learning Activites Learning Activities (# of week) Duration (hours, h) Workload (h)
Lecture & In-Class Activities 14 5 70
Preliminary & Further Study 14 2 28
Land Surveying 0 0 0
Group Work 0 0 0
Laboratory 0 0 0
Reading 0 0 0
Assignment (Homework) 0 0 0
Project Work 0 0 0
Seminar 0 0 0
Internship 0 0 0
Technical Visit 0 0 0
Web Based Learning 0 0 0
Implementation/Application/Practice 0 0 0
Practice at a workplace 0 0 0
Occupational Activity 0 0 0
Social Activity 0 0 0
Thesis Work 0 0 0
Field Study 0 0 0
Report Writing 0 0 0
Final Exam 1 2 2
Preparation for the Final Exam 1 25 25
Mid-Term Exam 1 2 2
Preparation for the Mid-Term Exam 1 20 20
Short Exam 0 0 0
Preparation for the Short Exam 0 0 0
TOTAL 32 0 147
Total Workload of the Course Unit 147
Workload (h) / 25.5 5,8
ECTS Credits allocated for the Course Unit 6,0