Kodu | Dersin Adı | Yarıyıl | Süresi(T+U) | Kredisi | AKTS Kredisi |
---|---|---|---|---|---|
YBS208 | VERİ VE METİN MADENCİLİĞİ | 4 | 3 | 3 | 6 |
DERS BİLGİLERİ |
|
---|---|
Dersin Öğretim Dili : | Türkçe |
Dersin Düzeyi | BACHELOR'S DEGREE, TYY: + 6.Level, EQF-LLL: 6.Level, QF-EHEA: First Cycle |
Dersin Türü | Zorunlu |
Dersin Veriliş Şekli | - |
Dersin Koordinatörü | Assist.Prof. DİDEM TETİK KÜÇÜKELÇİ |
Dersi Veren Öğretim Üyesi/Öğretim Görevlisi | |
Ders Ön Koşulu | Yok |
AMAÇ VE İÇERİK |
|
---|---|
Amaç: | This course aims to introduce and promote the use of data mining. This course aims to gain the ability to analyze large-scale databases. |
İçerik: | Contents of the course include the subjects such as basics of data mining in terms of statistical, machine learning and database. The course consists of three sections. The first section is about the basics of statistics and machine learning approach for data mining. In section two, basic data mining and algorithms for Online Analytical Processing, relationship rules and grouping will be covered. The third and last section of the course focuses on researches in areas such as text mining, association filter, link analysis. |
DERSİN ÖĞRENME ÇIKTILARI (Öğrenciler, bu dersi başarı ile tamamladıklarında aşağıda belirtilen bilgi, beceri ve/veya yetkinlikleri gösterirler.) |
---|
Use data mining software. |
Describe basket analysis and rules of association. |
Apply grouping algorithms on cases. |
Analyze classification algorithms. |
Conclude from the analysis results of classification algorithms. |
HAFTALIK DERS KONULARI VE ÖNGÖRÜLEN HAZIRLIK ÇALIŞMALARI |
|||
---|---|---|---|
Hafta | Ön Hazırlık | Konular | Yöntem |
1 | - | Introduction and General Concepts | Lecture & Discussion & Practice |
2 | Literature Review | Data mining fields of application | Lecture & Discussion & Practice |
3 | Literature Review | Ready programs in data mining - Electronic Table Programs in data mining | Lecture & Discussion & Practice |
4 | Literature Review | Preparing data analysis (steps) | Lecture & Discussion & Practice |
5 | Literature Review | OLAP | Lecture & Discussion & Practice |
6 | Literature Review | Classification and Clustering | Lecture & Discussion & Practice |
7 | Literature Review | Decision Trees | Lecture & Discussion & Practice |
8 | - | MID-TERM EXAM | - |
9 | Literature Review | Statistics in Data Mining | Lecture & Discussion & Practice |
10 | Literature Review | Artificial Intelligence in Data Mining | Lecture & Discussion & Practice |
11 | Literature Review | Artificial Neural Networks in Data Mining | Lecture & Discussion & Practice |
12 | Literature Review | Association theories | Lecture & Discussion & Practice |
13 | Literature Review | Other mining theories in Data mining -Web ve Text Mining | Lecture & Discussion & Practice |
14 | Literature Review | Case Studies | Lecture & Discussion & Practice |
15 | Literature Review | Industrial Applications in data mining | Lecture & Discussion & Practice |
16 | - | FINAL EXAM | - |
17 | - | FINAL EXAM | - |
KAYNAKLAR |
---|
Ozkan, Y. (2016). Veri madenciligi yontemleri. Papatya Publications Egitim. |
Oguzlar, A. (2011). Temel metin madenciligi. Dora Publications. |
ÖLÇME VE DEĞERLENDİRME |
|||
---|---|---|---|
Yarıyıl İçi Yapılan Çalışmaların Ölçme ve Değerlendirmesi | Etkinlik Sayısı | Katkı Yüzdesi | Açıklama |
(0) Etkisiz | (1) En Düşük | (2) Düşük | (3) Orta | (4) İyi | (5) Çok İyi |
---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 |
KNOWLEDGE | |||||||
---|---|---|---|---|---|---|---|
Theoretical | |||||||
Program Yeterlilikleri/Çıktıları | Katkı Düzeyi | ||||||
0 | 1 | 2 | 3 | 4 | 5 | ||
1 |
Define concepts such as management, manager and leader.
|
4 | |||||
2 |
Analyze the accuracy, reliability and validity of the new information obtained from the data.
|
5 |
KNOWLEDGE | |||||||
---|---|---|---|---|---|---|---|
Factual | |||||||
Program Yeterlilikleri/Çıktıları | Katkı Düzeyi | ||||||
0 | 1 | 2 | 3 | 4 | 5 | ||
1 |
Report the obtained data.
|
5 | |||||
2 |
Prepare software and projects related with the field.
|
5 |
SKILLS | |||||||
---|---|---|---|---|---|---|---|
Cognitive | |||||||
Program Yeterlilikleri/Çıktıları | Katkı Düzeyi | ||||||
0 | 1 | 2 | 3 | 4 | 5 | ||
1 |
Use the appropriate resources for data analysis related with the field.
|
5 | |||||
2 |
Analyze the work processes.
|
5 |
SKILLS | |||||||
---|---|---|---|---|---|---|---|
Practical | |||||||
Program Yeterlilikleri/Çıktıları | Katkı Düzeyi | ||||||
0 | 1 | 2 | 3 | 4 | 5 | ||
1 |
Manage projects as part of a team.
|
5 | |||||
2 |
Apply the material, techniques and analyzes in relation with the subject for project and work flows.
|
5 |
OCCUPATIONAL | |||||||
---|---|---|---|---|---|---|---|
Autonomy & Responsibility | |||||||
Program Yeterlilikleri/Çıktıları | Katkı Düzeyi | ||||||
0 | 1 | 2 | 3 | 4 | 5 | ||
1 |
Fulfill responsibility with a focus on result in individual and team studies.
|
5 |
OCCUPATIONAL | |||||||
---|---|---|---|---|---|---|---|
Learning to Learn | |||||||
Program Yeterlilikleri/Çıktıları | Katkı Düzeyi | ||||||
0 | 1 | 2 | 3 | 4 | 5 | ||
1 |
Recognizes what he/she knows about his/her field or not.
|
5 | |||||
2 |
Act the theoretical knowledge in real life with learning to learn approach.
|
5 | |||||
3 |
Apply different methods and techniques with an innovative approach in his/her research.
|
5 |
OCCUPATIONAL | |||||||
---|---|---|---|---|---|---|---|
Communication & Social | |||||||
Program Yeterlilikleri/Çıktıları | Katkı Düzeyi | ||||||
0 | 1 | 2 | 3 | 4 | 5 | ||
1 |
Apply the results obtained in accordance with voluntarism and social responsibility projects.
|
5 | |||||
2 |
Establish a healthy contact with colleagues
|
3 | |||||
3 |
Share the analyzes and obtained results with colleagues.
|
3 | |||||
4 |
Cooperate with colleagues at international level with the help of foreign language competency.
|
3 |
OCCUPATIONAL | |||||||
---|---|---|---|---|---|---|---|
Occupational and/or Vocational | |||||||
Program Yeterlilikleri/Çıktıları | Katkı Düzeyi | ||||||
0 | 1 | 2 | 3 | 4 | 5 | ||
1 |
Behave in accordance with ethical values regarding the collection, analysis and reporting of data.
|
4 | |||||
2 |
Participate the design of work processes and systems with full quality.
|
5 | |||||
3 |
Cooperate with other employees for the continuation of sustainability in the profession.
|
4 |
DERSİN İŞ YÜKÜ VE AKTS KREDİSİ |
|||
---|---|---|---|
Öğrenme-Öğretme Etkinlikleri İş Yükü | |||
Öğrenme-Öğretme Etkinlikleri | Etkinlik(hafta sayısı) | Süresi(saat sayısı) | Toplam İş Yükü |
Lecture & In-Class Activities | 14 | 3 | 42 |
Preliminary & Further Study | 13 | 2 | 26 |
Land Surveying | 0 | 0 | 0 |
Group Work | 0 | 0 | 0 |
Laboratory | 0 | 0 | 0 |
Reading | 0 | 0 | 0 |
Assignment (Homework) | 0 | 0 | 0 |
Project Work | 0 | 0 | 0 |
Seminar | 0 | 0 | 0 |
Internship | 0 | 0 | 0 |
Technical Visit | 0 | 0 | 0 |
Web Based Learning | 0 | 0 | 0 |
Implementation/Application/Practice | 6 | 2 | 12 |
Practice at a workplace | 0 | 0 | 0 |
Occupational Activity | 0 | 0 | 0 |
Social Activity | 0 | 0 | 0 |
Thesis Work | 0 | 0 | 0 |
Field Study | 0 | 0 | 0 |
Report Writing | 0 | 0 | 0 |
Final Exam | 1 | 1 | 1 |
Preparation for the Final Exam | 7 | 5 | 35 |
Mid-Term Exam | 1 | 1 | 1 |
Preparation for the Mid-Term Exam | 6 | 6 | 36 |
Short Exam | 0 | 0 | 0 |
Preparation for the Short Exam | 0 | 0 | 0 |
TOTAL | 48 | 0 | 153 |
Genel Toplam | 153 | ||
Toplam İş Yükü / 25.5 | 6 | ||
Dersin AKTS(ECTS) Kredisi | 6,0 |