Kodu | Dersin Adı | Yarıyıl | Süresi(T+U) | Kredisi | AKTS Kredisi |
---|---|---|---|---|---|
YBS413 | BÜYÜK VERİ ANALİZİ | 7 | 3 | 3 | 8 |
DERS BİLGİLERİ |
|
---|---|
Dersin Öğretim Dili : | Türkçe |
Dersin Düzeyi | BACHELOR'S DEGREE, TYY: + 6.Level, EQF-LLL: 6.Level, QF-EHEA: First Cycle |
Dersin Türü | Zorunlu |
Dersin Veriliş Şekli | - |
Dersin Koordinatörü | Assist.Prof. DİDEM TETİK KÜÇÜKELÇİ |
Dersi Veren Öğretim Üyesi/Öğretim Görevlisi | Dr.Öğr.Üyesi SÜREYYA İMRE BIYIKLI |
Ders Ön Koşulu | Yok |
AMAÇ VE İÇERİK |
|
---|---|
Amaç: | This course aims to provide the students with the basic knowledge that will enable them to handle the difficulties. The Big Data field has many disciplines by its very nature. As it becomes popular, many software and hardware tools and new algorithms emerge. A data scientist must follow these changing trends to deal with real-world challenges. |
İçerik: | Contents of the course include the subjects such as basic platforms such as Hadoop, Spark, and tools like IBM System G for big data, large scale machine learning methods, which are the basis for artificial intelligence and cognitive networks, Intel and Power chips, analytical optimization methods for different hardware platforms such as GPU and FPGA, difficulties in Linked Big Data field including issues such as graph, graphical models, spatial-temporal analysis, cognitive analytics etc. |
DERSİN ÖĞRENME ÇIKTILARI (Öğrenciler, bu dersi başarı ile tamamladıklarında aşağıda belirtilen bilgi, beceri ve/veya yetkinlikleri gösterirler.) |
---|
Conclude driven and undriven deduction from big data. {conclude} |
Analyze big data by usuing R language. {analysis} |
Create applications related to graphical representation of big data.{create} |
Recognize the current application areas.{recognize} |
Modify the knowledge obtained from big data analysis to solve the problems in daily life.{modify} |
HAFTALIK DERS KONULARI VE ÖNGÖRÜLEN HAZIRLIK ÇALIŞMALARI |
|||
---|---|---|---|
Hafta | Ön Hazırlık | Konular | Yöntem |
1 | - | Introduction to the course, Understanding Big Data | Lecture & Discussion & Practice |
2 | Literature Review, Assignment | Big Data Components, Big Data Analitics, R Applications- I | Lecture & Discussion & Practice |
3 | Literature Review, Assignment | Big Data Analitics(Methodology), R Applications - II | Lecture & Discussion & Practice |
4 | Literature Review, Assignment | Machine Learning for Big Data Analysis | Lecture & Discussion & Practice |
5 | Literature Review, Assignment | Graph Calculation- Big Data Analitics | Lecture & Discussion & Practice |
6 | Literature Review, Assignment | Big Data Tools: Hadoop, MapReduce, Spark, NoSQL, MongoDB, Pig, Impala | Lecture & Discussion & Practice |
7 | Literature Review, Assignment | Statistical Methods for Big Data Analysis | Lecture & Discussion & Practice |
8 | - | MID-TERM EXAM | - |
9 | Literature Review, Assignment | Naive Bayes Classifier for Big Data | Lecture & Discussion & Practice |
10 | Literature Review, Assignment | Simple and Multivariate Regression Analysis for Big Data | Lecture & Discussion & Practice |
11 | Literature Review, Assignment | K-Means Clustering for Big Data | Lecture & Discussion & Practice |
12 | Literature Review, Assignment | Decision Trees for Big Data | Lecture & Discussion & Practice |
13 | Literature Review, Assignment | Logistic Regression for Big Data | Lecture & Discussion & Practice |
14 | Literature Review, Assignment | Project Presentation | Lecture & Discussion & Practice |
15 | Literature Review, Assignment | Project Presentation | Lecture & Discussion & Practice |
16 | - | FINAL EXAM | - |
17 | - | FINAL EXAM | - |
KAYNAKLAR |
---|
Gursakal, N. (2014). Buyuk Veri. Dora Publications. |
Mayer-Schonberger, V., & Cukier, K. (2013). Buyuk Veri: Yasama. Calisma ve Dusunme Seklimizi Donusturecek Bir Devrim, Paloma Publications, Istanbul. |
ÖLÇME VE DEĞERLENDİRME |
|||
---|---|---|---|
Yarıyıl İçi Yapılan Çalışmaların Ölçme ve Değerlendirmesi | Etkinlik Sayısı | Katkı Yüzdesi | Açıklama |
(0) Etkisiz | (1) En Düşük | (2) Düşük | (3) Orta | (4) İyi | (5) Çok İyi |
---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 |
KNOWLEDGE | |||||||
---|---|---|---|---|---|---|---|
Theoretical | |||||||
Program Yeterlilikleri/Çıktıları | Katkı Düzeyi | ||||||
0 | 1 | 2 | 3 | 4 | 5 | ||
1 |
Define concepts such as management, manager and leader.
|
4 | |||||
2 |
Analyze the accuracy, reliability and validity of the new information obtained from the data.
|
5 |
KNOWLEDGE | |||||||
---|---|---|---|---|---|---|---|
Factual | |||||||
Program Yeterlilikleri/Çıktıları | Katkı Düzeyi | ||||||
0 | 1 | 2 | 3 | 4 | 5 | ||
1 |
Report the obtained data.
|
5 | |||||
2 |
Prepare software and projects related with the field.
|
5 |
SKILLS | |||||||
---|---|---|---|---|---|---|---|
Cognitive | |||||||
Program Yeterlilikleri/Çıktıları | Katkı Düzeyi | ||||||
0 | 1 | 2 | 3 | 4 | 5 | ||
1 |
Use the appropriate resources for data analysis related with the field.
|
5 | |||||
2 |
Analyze the work processes.
|
5 |
SKILLS | |||||||
---|---|---|---|---|---|---|---|
Practical | |||||||
Program Yeterlilikleri/Çıktıları | Katkı Düzeyi | ||||||
0 | 1 | 2 | 3 | 4 | 5 | ||
1 |
Manage projects as part of a team.
|
5 | |||||
2 |
Apply the material, techniques and analyzes in relation with the subject for project and work flows.
|
5 |
OCCUPATIONAL | |||||||
---|---|---|---|---|---|---|---|
Autonomy & Responsibility | |||||||
Program Yeterlilikleri/Çıktıları | Katkı Düzeyi | ||||||
0 | 1 | 2 | 3 | 4 | 5 | ||
1 |
Fulfill responsibility with a focus on result in individual and team studies.
|
5 |
OCCUPATIONAL | |||||||
---|---|---|---|---|---|---|---|
Learning to Learn | |||||||
Program Yeterlilikleri/Çıktıları | Katkı Düzeyi | ||||||
0 | 1 | 2 | 3 | 4 | 5 | ||
1 |
Recognizes what he/she knows about his/her field or not.
|
5 | |||||
2 |
Act the theoretical knowledge in real life with learning to learn approach.
|
5 | |||||
3 |
Apply different methods and techniques with an innovative approach in his/her research.
|
5 |
OCCUPATIONAL | |||||||
---|---|---|---|---|---|---|---|
Communication & Social | |||||||
Program Yeterlilikleri/Çıktıları | Katkı Düzeyi | ||||||
0 | 1 | 2 | 3 | 4 | 5 | ||
1 |
Apply the results obtained in accordance with voluntarism and social responsibility projects.
|
5 | |||||
2 |
Establish a healthy contact with colleagues
|
4 | |||||
3 |
Share the analyzes and obtained results with colleagues.
|
3 | |||||
4 |
Cooperate with colleagues at international level with the help of foreign language competency.
|
3 |
OCCUPATIONAL | |||||||
---|---|---|---|---|---|---|---|
Occupational and/or Vocational | |||||||
Program Yeterlilikleri/Çıktıları | Katkı Düzeyi | ||||||
0 | 1 | 2 | 3 | 4 | 5 | ||
1 |
Behave in accordance with ethical values regarding the collection, analysis and reporting of data.
|
5 | |||||
2 |
Participate the design of work processes and systems with full quality.
|
5 | |||||
3 |
Cooperate with other employees for the continuation of sustainability in the profession.
|
4 |
DERSİN İŞ YÜKÜ VE AKTS KREDİSİ |
|||
---|---|---|---|
Öğrenme-Öğretme Etkinlikleri İş Yükü | |||
Öğrenme-Öğretme Etkinlikleri | Etkinlik(hafta sayısı) | Süresi(saat sayısı) | Toplam İş Yükü |
Lecture & In-Class Activities | 14 | 3 | 42 |
Preliminary & Further Study | 13 | 3 | 39 |
Land Surveying | 0 | 0 | 0 |
Group Work | 4 | 5 | 20 |
Laboratory | 0 | 0 | 0 |
Reading | 0 | 0 | 0 |
Assignment (Homework) | 4 | 4 | 16 |
Project Work | 1 | 24 | 24 |
Seminar | 0 | 0 | 0 |
Internship | 0 | 0 | 0 |
Technical Visit | 0 | 0 | 0 |
Web Based Learning | 0 | 0 | 0 |
Implementation/Application/Practice | 0 | 0 | 0 |
Practice at a workplace | 0 | 0 | 0 |
Occupational Activity | 0 | 0 | 0 |
Social Activity | 0 | 0 | 0 |
Thesis Work | 0 | 0 | 0 |
Field Study | 0 | 0 | 0 |
Report Writing | 1 | 4 | 4 |
Final Exam | 1 | 1 | 1 |
Preparation for the Final Exam | 7 | 4 | 28 |
Mid-Term Exam | 1 | 1 | 1 |
Preparation for the Mid-Term Exam | 7 | 4 | 28 |
Short Exam | 0 | 0 | 0 |
Preparation for the Short Exam | 0 | 0 | 0 |
TOTAL | 53 | 0 | 203 |
Genel Toplam | 203 | ||
Toplam İş Yükü / 25.5 | 8 | ||
Dersin AKTS(ECTS) Kredisi | 8,0 |