TR EN

VERİ MADENCİLİĞİ DERS TANITIM VE UYGULAMA BİLGİLERİ

Kodu Dersin Adı Yarıyıl Süresi(T+U) Kredisi AKTS Kredisi
YEM406 VERİ MADENCİLİĞİ 8 3 3 8

DERS BİLGİLERİ

Dersin Öğretim Dili : Türkçe
Dersin Düzeyi BACHELOR'S DEGREE, TYY: + 6.Level, EQF-LLL: 6.Level, QF-EHEA: First Cycle
Dersin Türü Zorunlu
Dersin Veriliş Şekli -
Dersin Koordinatörü Assist.Prof. TAYLAN MARAL
Dersi Veren Öğretim Üyesi/Öğretim Görevlisi
Ders Ön Koşulu Yok

AMAÇ VE İÇERİK

Amaç: This course aims to teach the students Data Mining Concepts, Data Preparation Techniques, Statistical Learning Theory (Naive Bayes), Clustering Methods (K-Means, hierarchical), Decision Trees and Decision Rules, Association Rules under the new media environment and the acquis.
İçerik: Contents of the course include the subjects such as finding and discovering useful information in the new media environment in accordance with the purpose of data mining, describing the current situation using the information discovered and predicting future occurrences.

DERSİN ÖĞRENME ÇIKTILARI (Öğrenciler, bu dersi başarı ile tamamladıklarında aşağıda belirtilen bilgi, beceri ve/veya yetkinlikleri gösterirler.)

Understand the basic concepts of data mining.
List data mining methods such as clustering, classification, association.
Apply the data mining.
Analyse the data imported from the source.

HAFTALIK DERS KONULARI VE ÖNGÖRÜLEN HAZIRLIK ÇALIŞMALARI

Hafta Ön Hazırlık Konular Yöntem
1 Literature Review Introduction to Data Mining Lecture
2 Literature Review New Media and Data Mining Relation Lecture
3 Literature Review Computer Systems and Data Mining Lecture
4 Literature Review, Using Visual Sources Data Mining Applications Lecture
5 Literature Review Introduction to Data Mining Algorithms Lecture
6 Literature Review, Using Visual Sources Flow-charting Lecture
7 Literature Review Basic Concepts in data communications Lecture
8 - MID-TERM EXAM -
9 Literature Review Introduction to Programming Languages Lecture
10 Literature Review, Using Visual Sources, Using Applications Introduction to Database and Management Lecture
11 Using Visual Sources, Using Applications Usage of Software Tools in Computer Labs Demonstrating on Computer Programme
12 Using Visual Sources, Using Applications Introduction to Programming Languages Demonstrating on Computer Programme
13 Using Visual Sources, Using Applications Mathematical process in programming language, controls and cycles Demonstrating on Computer Programme
14 Using Visual Sources, Using Applications Base-Calling Algorithms Lecture & Demonstrating on Computer Programme
15 Using Visual Sources, Using Applications Processing Algorithms Lecture & Demonstrating on Computer Programme
16 - FINAL EXAM -
17 - FINAL EXAM -

KAYNAKLAR

Silahtaroglu G. (2016). Veri Madenciligi Kavram ve Algoritmaları. Istanbul: Papatya Bilim
Karacan H., Yesilbudak M. (2010). Kullanici Merkezli Interaktif Veri Madenciligi: Bir Literatur Taramasi. Ankara: Bilisim Teknolojileri Dergisi
Zaki M. J., Wagner M. J. (2014). Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge: Cambridge University Press

ÖLÇME VE DEĞERLENDİRME

Yarıyıl İçi Yapılan Çalışmaların Ölçme ve Değerlendirmesi Etkinlik Sayısı Katkı Yüzdesi Açıklama
(0) Etkisiz (1) En Düşük (2) Düşük (3) Orta (4) İyi (5) Çok İyi
0 1 2 3 4 5

DERSİN PROGRAM ÖĞRENME ÇIKTILARINA KATKISI

KNOWLEDGE
Theoretical
Program Yeterlilikleri/Çıktıları Katkı Düzeyi
0 1 2 3 4 5
1
List the history of communication, mass media, communication theories and leading theorists.
0
2
List the historical, social and cultural types of communication and explain the related concepts.
1
3
Define the important points of the history and theories of communication through daily life practices and social life.
1
KNOWLEDGE
Factual
Program Yeterlilikleri/Çıktıları Katkı Düzeyi
0 1 2 3 4 5
1
Compare the traditional media and new media economic policies.
1
2
Interpret digital culture with constantly updated and self-renewing topics.
3
3
Interpret the technical, socio-political and legal aspects of cyber security issues in the field of new media.
3
SKILLS
Cognitive
Program Yeterlilikleri/Çıktıları Katkı Düzeyi
0 1 2 3 4 5
1
Define the basic concepts of communication history, communication theories, traditional and new media channels.
1
SKILLS
Practical
Program Yeterlilikleri/Çıktıları Katkı Düzeyi
0 1 2 3 4 5
1
Prepare web pages with CSS codes.
1
2
Produce creative content in new media environments, create an image and sound and practical studies about programming.
1
3
Analyze the sub-texts and their semantics of the studies presented to the society by mass media.
2
4
Use qualitative and quantitative elements to construct arguments on studies in the field of communication.
4
OCCUPATIONAL
Autonomy & Responsibility
Program Yeterlilikleri/Çıktıları Katkı Düzeyi
0 1 2 3 4 5
1
Manage social media accounts of brands, corporate firms and public institutions thanks to its advanced knowledge in content production and user experience.
1
OCCUPATIONAL
Learning to Learn
Program Yeterlilikleri/Çıktıları Katkı Düzeyi
0 1 2 3 4 5
1
Review local and foreign studies in the field of New Media. Creates innovative works in his/her field.
2
2
Criticize the effects of social media activities on socio-political field.
2
OCCUPATIONAL
Communication & Social
Program Yeterlilikleri/Çıktıları Katkı Düzeyi
0 1 2 3 4 5
1
Plan scientific studies in any area that can be encountered in different disciplines and transfer them to people from different disciplines.
3
2
Determine how much of the content produced by the media is right and wrong.
4
OCCUPATIONAL
Occupational and/or Vocational
Program Yeterlilikleri/Çıktıları Katkı Düzeyi
0 1 2 3 4 5
1
Follows the developments that have begun to guide the present and the future such as "Software". Produce various software products for different sectors.
1
2
Design using new architectures of big data processing systems.
5
3
Determine the logic of operation of artificial intelligence algorithms and determines the possible effects on media and indirectly society.
2

DERSİN İŞ YÜKÜ VE AKTS KREDİSİ

Öğrenme-Öğretme Etkinlikleri İş Yükü
Öğrenme-Öğretme Etkinlikleri Etkinlik(hafta sayısı) Süresi(saat sayısı) Toplam İş Yükü
Lecture & In-Class Activities 14 3 42
Preliminary & Further Study 13 6 78
Land Surveying 0 0 0
Group Work 0 0 0
Laboratory 0 0 0
Reading 0 0 0
Assignment (Homework) 0 0 0
Project Work 0 0 0
Seminar 0 0 0
Internship 0 0 0
Technical Visit 0 0 0
Web Based Learning 0 0 0
Implementation/Application/Practice 0 0 0
Practice at a workplace 0 0 0
Occupational Activity 0 0 0
Social Activity 0 0 0
Thesis Work 0 0 0
Field Study 0 0 0
Report Writing 0 0 0
Final Exam 1 1 1
Preparation for the Final Exam 1 42 42
Mid-Term Exam 1 1 1
Preparation for the Mid-Term Exam 1 40 40
Short Exam 0 0 0
Preparation for the Short Exam 0 0 0
TOTAL 31 0 204
Genel Toplam 204
Toplam İş Yükü / 25.5 8
Dersin AKTS(ECTS) Kredisi 8,0