TR EN

CONTROL SYSTEMS COURSE IDENTIFICATION AND APPLICATION INFORMATION

Code Name of the Course Unit Semester In-Class Hours (T+P) Credit ECTS Credit
EEM306 CONTROL SYSTEMS 6 5 4 6

Objectives and Contents

Objectives: The main purpose of this course is to teach fundamental analysis methods for control systems. The analysis methods discussed in the course are also useful for control system design; however analysis aspects of the methods will be emphasized. Various methods for transient analysis, steady-state analysis and stability analysis will be studied. To that end, after a comprehensive introduction to systems modeling; both frequency domain and time domain approaches are studied in detail. Design point of view is given implicitly via analysis examples. The topics covered in the course are reinforced via experiments conducted in ELE 356 (Control Systems Laboratory).
Content: Historical perspective of control systems. Basic concepts of open-loop and closed-loop, feedback. Models of physical systems: electrical systems, mechanical systems, fluid systems, thermal systems, servomotors, electro-mechanical systems. Block diagrams, signal-flow graphs. Time response analysis, steady-state error analysis. Sensitivity, disturbance rejection and stability analysis, Routh-Hurwitz criterion. Root-Locus plotting. Frequency response analysis: Bode, polar and magnitude-phase plots, Nyquist analysis, gain/phase margins, Nichols chart. State-space analysis: State-space description, state transition matrix, similarity transformation, diagonalization of system matrix, modal decomposition, companion forms, transfer function decomposition, controllability and observability. State-space design: State feedback, state observer.