TR EN

RENEWABLE ENERGY SYSTEMS PROGRAMME COURSE DESCRIPTION

Code Name of the Course Unit Semester In-Class Hours (T+P) Credit ECTS Credit
EEM445 RENEWABLE ENERGY SYSTEMS 7 4 3 6

GENERAL INFORMATION

Language of Instruction : Turkish
Level of the Course Unit : BACHELOR'S DEGREE, TYY: + 6.Level, EQF-LLL: 6.Level, QF-EHEA: First Cycle
Type of the Course : Elective
Mode of Delivery of the Course Unit -
Coordinator of the Course Unit Assist.Prof. ERCAN AYKUT
Instructor(s) of the Course Unit Assist.Prof. YUSUF GÜRCAN ŞAHİN
Course Prerequisite No

OBJECTIVES AND CONTENTS

Objectives of the Course Unit: The objective of this course is to provide an overview of the most important renewable energy resources, and the state-of the-art technologies harnessing these energy sources.
Contents of the Course Unit: Renewable energy sources; Solar energy systems; Wind energy systems; Hydropower; Biomass; Wave energy; Geothermal energy, Hydrogen energy

KEY LEARNING OUTCOMES OF THE COURSE UNIT (On successful completion of this course unit, students/learners will or will be able to)

To understand the fundamentals and main characteristics of renewable energy sources and their differences compared to fossil fuels.
Students shall recognize the effects that current energy systems based on fossil fuels have over the environment and the society.
To compare different renewable energy technologies and choose the most appropriate based on local conditions.
To perform and compare environmental assessments of renewable energy systems and conventional fossil fuel systems.
To design renewable/hybrid energy systems that meet specific energy demands.

WEEKLY COURSE CONTENTS AND STUDY MATERIALS FOR PRELIMINARY & FURTHER STUDY

Week Preparatory Topics(Subjects) Method
1 - Introduction to Renewable Energy Technology -
2 - Fossil fuels and climate change -
3 - Solar Thermal Energy, Solar Water Heater, Low-temperature solar applications -
4 - Active solar applications, Passive solar applications , Solar Electricity Production; Economics, potential and environmental impacts -
5 - Photovoltaics, Different Photovoltaics Applications, Economics and future prospects -
6 - Wind Energy, Wind turbines, Wind energy potential, Off-shore wind fields, Economics, Environmental impacts -
7 - Hydropower, The past of hydro energy, Hydroelectric plants -
8 - MID-TERM EXAM -
9 - Hydropower, Environmental impacts, Economics -
10 - Biomass, Biomass as a fossil fuel, Bioenergy sources -
11 - Microalgae and energy production -
12 - Geothermal Energy, Technologies for geothermal energy exploitation -
13 - Renewable Hydrogen Energy, Fuel cells, Fuel cell applications -
14 - Presentations -
15 - Preparation for Final exam -
16 - FINAL EXAM -
17 - FINAL EXAM -

SOURCE MATERIALS & RECOMMENDED READING

ASSESSMENT

Assessment & Grading of In-Term Activities Number of Activities Degree of Contribution (%) Description
Level of Contribution
0 1 2 3 4 5

CONTRIBUTION OF THE COURSE UNIT TO THE PROGRAMME LEARNING OUTCOMES

KNOWLEDGE

Theoretical

Programme Learning Outcomes Level of Contribution
0 1 2 3 4 5
1
Explains the fundamental engineering concepts of electrical and electronics science and relates them to the groundwork of electrical and electronics science.
3

KNOWLEDGE

Factual

Programme Learning Outcomes Level of Contribution
0 1 2 3 4 5
1
Uses theoretical and practical knowledge coming from electrical and electronics sciences, to find solutions to engineering problems.
3

SKILLS

Cognitive

Programme Learning Outcomes Level of Contribution
0 1 2 3 4 5
1
Determines the components and the underlying process of a system and designs an appropriate model related to electrical and electronics under reasonable constraints.
3
2
Designs a model related to electrical and electronics with modern techniques.
4

SKILLS

Practical

Programme Learning Outcomes Level of Contribution
0 1 2 3 4 5
1
Determines, detects and analyzes the areas of electrical and electronics engineering science applications and develops appropriate solutions.
3
2
Identifies, models and solveselectrical and electronics engineering problems by applying appropriate analytical methods.
3
3
Determines and uses the necessary electrical and electronics engineering technologies in an efficient way for engineering applications.
3

OCCUPATIONAL

Autonomy & Responsibility

Programme Learning Outcomes Level of Contribution
0 1 2 3 4 5
1
Possess the responsibility and ability to design and conduct experiments for engineering problems by collecting, analyzing and interpreting data.
3
2
Possess the ability to conduct effective individual study.
3
3
Takes responsibility as a team work and contributes in an effective way.
3

OCCUPATIONAL

Learning to Learn

Programme Learning Outcomes Level of Contribution
0 1 2 3 4 5
1
Monitors the developments in the field of electrical and electronics engineering technologies by means of books, internet and related journals and possess the required knowledge for the management, control, development and security of information technologies.
4
2
Develops positive attitude towards lifelong learning.
3

OCCUPATIONAL

Communication & Social

Programme Learning Outcomes Level of Contribution
0 1 2 3 4 5
1
Communicates effectively by oral and/or written form and uses at least one foreign language.
3
2
Possess sufficient consciousness about the issues of project management, practical applications and also environmental protection, worker's health and security.
3

OCCUPATIONAL

Occupational and/or Vocational

Programme Learning Outcomes Level of Contribution
0 1 2 3 4 5
1
Possess professional and ethical responsibility and willingness to share it.
4
2
Possess sufficient consciousness about the universality of electrical and electronics engineering solutions and applications and be well aware of the importance of innovation.
3

WORKLOAD & ECTS CREDITS OF THE COURSE UNIT

Workload for Learning & Teaching Activities

Type of the Learning Activites Learning Activities (# of week) Duration (hours, h) Workload (h)
Lecture & In-Class Activities 14 3 42
Preliminary & Further Study 14 3 42
Land Surveying 0 0 0
Group Work 2 5 10
Laboratory 0 0 0
Reading 3 5 15
Assignment (Homework) 3 4 12
Project Work 2 5 10
Seminar 0 0 0
Internship 0 0 0
Technical Visit 0 0 0
Web Based Learning 0 0 0
Implementation/Application/Practice 0 0 0
Practice at a workplace 0 0 0
Occupational Activity 0 0 0
Social Activity 0 0 0
Thesis Work 0 0 0
Field Study 0 0 0
Report Writing 4 5 20
Final Exam 1 1 1
Preparation for the Final Exam 0 0 0
Mid-Term Exam 1 1 1
Preparation for the Mid-Term Exam 0 0 0
Short Exam 0 0 0
Preparation for the Short Exam 0 0 0
TOTAL 44 0 153
Total Workload of the Course Unit 153
Workload (h) / 25.5 6
ECTS Credits allocated for the Course Unit 6,0