Code |
Name of the Course Unit |
Semester |
In-Class Hours (T+P) |
Credit |
ECTS Credit |
EEM303 |
POWER ELECTRONICS |
5 |
4 |
3 |
5 |
GENERAL INFORMATION |
Language of Instruction : |
Turkish |
Level of the Course Unit : |
BACHELOR'S DEGREE, TYY: + 6.Level, EQF-LLL: 6.Level, QF-EHEA: First Cycle |
Type of the Course : |
Compulsory |
Mode of Delivery of the Course Unit |
- |
Coordinator of the Course Unit |
Assist.Prof. PERİ GÜNEŞ |
Instructor(s) of the Course Unit |
Assist.Prof. ERCAN AYKUT |
Course Prerequisite |
No |
OBJECTIVES AND CONTENTS |
Objectives of the Course Unit: |
To teach students power electronics Fundamentals |
Contents of the Course Unit: |
Introduction to Power Electronics Working Principle and Features of Diode and
SCR Power Elements BJT and MOSFET Power Elements Working Principle and
Features Working Principle and Features of Triac, GTO, MCT and IGBT Power
Elements Working Principle, Features and Types of AC-DC Converters (Rectifiers)
Investigation of Single and Multi Phase, Half Wave, Uncontrolled AC-DC
Converters Investigation of Single and Multi Phase, Half Wave, Uncontrolled ACDC Converters Vize Working Principle, Characteristics and Types of AC-AC
Converters AC-AC Converters to AC Grid and AC-AC Converters Design Working
Principle, Features and Types of DC-DC Converters Investigation of Single and
Multi-Zone Chopper Type DC-DC Converters Working Principle, Characteristics and
Types of DC-AC Converters Investigation of Three Phase, Square Wave and PWM
DC-AC Converters |
KEY LEARNING OUTCOMES OF THE COURSE UNIT (On successful completion of this course unit, students/learners will or will be able to) |
Getting to know power electronics |
To recognize power electronics circuit applications |
WEEKLY COURSE CONTENTS AND STUDY MATERIALS FOR PRELIMINARY & FURTHER STUDY |
Week |
Preparatory |
Topics(Subjects) |
Method |
1 |
- |
Introduction to Power Electronics |
- |
2 |
- |
Working Principle and Features of Diode and SCR Power Elements |
- |
3 |
- |
BJT and MOSFET Power Elements Working Principle and Features |
- |
4 |
- |
Working Principle and Features of Triac, GTO, MCT and IGBT Power Elements |
- |
5 |
- |
Working Principle, Features and Types of AC-DC Converters (Rectifiers) |
- |
6 |
- |
Investigation of Single and Multi Phase, Half Wave, Uncontrolled AC-DC Converters |
- |
7 |
- |
Investigation of Single and Multi Phase, Half Wave, Uncontrolled AC-DC Converters |
- |
8 |
- |
MID-TERM EXAM |
- |
9 |
- |
Working Principle, Characteristics and Types of AC-AC Converters |
- |
10 |
- |
AC-AC Converters to AC Grid and AC-AC Converters Design |
- |
11 |
- |
Working Principle, Features and Types of DC-DC Converters |
- |
12 |
- |
Investigation of Single and Multi-Zone Chopper Type DC-DC Converters |
- |
13 |
- |
Working Principle, Characteristics and Types of DC-AC Converters |
- |
14 |
- |
Investigation of Three Phase, Square Wave and PWM DC-AC Converters |
- |
15 |
- |
Preparation for Final exam |
- |
16 |
- |
FINAL EXAM |
- |
17 |
- |
FINAL EXAM |
- |
SOURCE MATERIALS & RECOMMENDED READING |
Güç Elektroniği, Mohan,Undeland, Robbins, Çeviri: Nejat Tuncay,
Metin Gökaşan, Seta Boğosyan, Literatür Yayınları, 2012
Modern Power Electronics and Drivers, Bimal K. Bose, Prentice Hall PTR
Güç Elektroniği, Doç.Dr. Osman Gürdal, Nobel Yayın Dağıtım
Power Electronic Control of AC Motors, JMD Murphy&FG Turnbull 2010 |
ASSESSMENT |
Assessment & Grading of In-Term Activities |
Number of Activities |
Degree of Contribution (%) |
Description |
Level of Contribution |
0 |
1 |
2 |
3 |
4 |
5 |
CONTRIBUTION OF THE COURSE UNIT TO THE PROGRAMME LEARNING OUTCOMES
KNOWLEDGE |
Theoretical |
|
Programme Learning Outcomes |
Level of Contribution |
0 |
1 |
2 |
3 |
4 |
5 |
1 |
Explains the fundamental engineering concepts of electrical and electronics science and relates them to the groundwork of electrical and electronics science.
|
|
|
2 |
|
|
|
KNOWLEDGE |
Factual |
|
Programme Learning Outcomes |
Level of Contribution |
0 |
1 |
2 |
3 |
4 |
5 |
1 |
Uses theoretical and practical knowledge coming from electrical and electronics sciences, to find solutions to engineering problems.
|
|
|
|
|
|
5 |
SKILLS |
Cognitive |
|
Programme Learning Outcomes |
Level of Contribution |
0 |
1 |
2 |
3 |
4 |
5 |
1 |
Determines the components and the underlying process of a system and designs an appropriate model related to electrical and electronics under reasonable constraints.
|
|
|
|
|
|
5 |
2 |
Designs a model related to electrical and electronics with modern techniques.
|
|
|
|
|
|
5 |
SKILLS |
Practical |
|
Programme Learning Outcomes |
Level of Contribution |
0 |
1 |
2 |
3 |
4 |
5 |
1 |
Determines, detects and analyzes the areas of electrical and electronics engineering science applications and develops appropriate solutions.
|
0 |
|
|
|
|
|
2 |
Identifies, models and solveselectrical and electronics engineering problems by applying appropriate analytical methods.
|
|
|
|
3 |
|
|
3 |
Determines and uses the necessary electrical and electronics engineering technologies in an efficient way for engineering applications.
|
|
|
|
|
4 |
|
OCCUPATIONAL |
Autonomy & Responsibility |
|
Programme Learning Outcomes |
Level of Contribution |
0 |
1 |
2 |
3 |
4 |
5 |
1 |
Possess the responsibility and ability to design and conduct experiments for engineering problems by collecting, analyzing and interpreting data.
|
|
|
|
|
4 |
|
2 |
Possess the ability to conduct effective individual study.
|
0 |
|
|
|
|
|
3 |
Takes responsibility as a team work and contributes in an effective way.
|
|
|
|
|
|
5 |
OCCUPATIONAL |
Learning to Learn |
|
Programme Learning Outcomes |
Level of Contribution |
0 |
1 |
2 |
3 |
4 |
5 |
1 |
Monitors the developments in the field of electrical and electronics engineering technologies by means of books, internet and related journals and possess the required knowledge for the management, control, development and security of information technologies.
|
|
|
|
|
4 |
|
2 |
Develops positive attitude towards lifelong learning.
|
|
|
|
3 |
|
|
OCCUPATIONAL |
Communication & Social |
|
Programme Learning Outcomes |
Level of Contribution |
0 |
1 |
2 |
3 |
4 |
5 |
1 |
Communicates effectively by oral and/or written form and uses at least one foreign language.
|
0 |
|
|
|
|
|
2 |
Possess sufficient consciousness about the issues of project management, practical applications and also environmental protection, worker's health and security.
|
0 |
|
|
|
|
|
OCCUPATIONAL |
Occupational and/or Vocational |
|
Programme Learning Outcomes |
Level of Contribution |
0 |
1 |
2 |
3 |
4 |
5 |
1 |
Possess professional and ethical responsibility and willingness to share it.
|
|
|
|
|
4 |
|
2 |
Possess sufficient consciousness about the universality of electrical and electronics engineering solutions and applications and be well aware of the importance of innovation.
|
|
|
|
|
|
5 |
WORKLOAD & ECTS CREDITS OF THE COURSE UNIT |
Workload for Learning & Teaching Activities |
Type of the Learning Activites |
Learning Activities (# of week) |
Duration (hours, h) |
Workload (h) |
Lecture & In-Class Activities |
14 |
4 |
56 |
Preliminary & Further Study |
0 |
0 |
0 |
Land Surveying |
0 |
0 |
0 |
Group Work |
0 |
0 |
0 |
Laboratory |
6 |
3 |
18 |
Reading |
0 |
0 |
0 |
Assignment (Homework) |
2 |
4 |
8 |
Project Work |
0 |
0 |
0 |
Seminar |
0 |
0 |
0 |
Internship |
0 |
0 |
0 |
Technical Visit |
0 |
0 |
0 |
Web Based Learning |
0 |
0 |
0 |
Implementation/Application/Practice |
0 |
0 |
0 |
Practice at a workplace |
0 |
0 |
0 |
Occupational Activity |
0 |
0 |
0 |
Social Activity |
0 |
0 |
0 |
Thesis Work |
0 |
0 |
0 |
Field Study |
0 |
0 |
0 |
Report Writing |
6 |
3 |
18 |
Final Exam |
1 |
1 |
1 |
Preparation for the Final Exam |
1 |
8 |
8 |
Mid-Term Exam |
1 |
1 |
1 |
Preparation for the Mid-Term Exam |
1 |
4 |
4 |
Short Exam |
2 |
2 |
4 |
Preparation for the Short Exam |
1 |
4 |
4 |
TOTAL |
35 |
0 |
122 |
|
Total Workload of the Course Unit |
122 |
|
|
Workload (h) / 25.5 |
4,8 |
|
|
ECTS Credits allocated for the Course Unit |
5,0 |
|